МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 64 ИМЕНИ ГЕРОЯ СОВЕТСКОГО СОЮЗА И.В. ПАНФИЛОВА» ЛЕНИНСКОГО РАЙОНА ГОРОДА САРАТОВА

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДАЮ	
Руководитель МО	Заместитель директора по УР	Директор МОУ «СОШ № 64»	
/З.Т. Ярыгина/	МОУ «СОШ № 64»	/А.Н. Хитун/	
Протокол № от	/А.Н. Южанина/	Приказ № от	
«» 2023 г.	«»2023 г.	« <u>»</u> 2023 г.	

РАБОЧАЯ ПРОГРАММА

по физике

Уровень образования: среднее общее 10 класс

Рабочая программа по физике разработана на основании Федерального государственного стандарта среднего общего образования 2021, основной Образовательной программы МОУ «СОШ № 64» Ленинского района Саратова, учебного плана на 2023-2024 учебный год МОУ «СОШ № 64», Примерной рабочей программы Г.Я. Мякишев, Б.Б. Буховцев Н.Н. Сотский Физика10 класс: учеб. пособие для общеобразовательных организаций — М Просвещение, 2021.

Программу составила: Корниенко Светлана Валентиновна, учитель физики

Рассмот	грено на заседании
педа	гогического совета
прот	окол №
от «	» августа 2023 г.

1. Пояснительная записка.

Программа составлена на основе:

- требований к результатам освоения основной образовательной программы среднего общего образования (ООП СОО), представленных в Федеральном государственном образовательном стандарте (ФГОС) среднего общего образования;
- Примерной основной образовательной программы среднего общего образования, учебником физики (Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика. 10 класс. М: Просвещение, 2021).

В ней также учтены основные идеи и положения программы формирования и развития универсальных учебных действий для среднего (полного) общего образования и соблюдена преемственность с Примерной программой по физике для основного общего образования.

В рабочей программе для старшей школы предусмотрено развитие всех основных видов деятельности, представленных в программе основного общего образования.

Особенности программы состоят в следующем:

- основное содержание курса ориентировано на освоение Примерной программы СОО и Фундаментального ядра содержания физического образования;
- объём и глубина изучения учебного материала определяются основным содержанием курса и требованиями к результатам освоения основной образовательной программы и получают дальнейшую конкретизацию в примерном тематическом планировании;
- основное содержание курса и примерное тематическое планирование определяют содержание и виды деятельности, которые должны быть освоены обучающимися при изучении физики;

Освоение программы по физике обеспечивает овладение основами учебно-исследовательской деятельности, научными методами решения различных теоретических и практических задач.

Методологической основой ФГОС СОО является системно-деятельностный подход. Основные виды учебной деятельности, представленные в тематическом планировании данной рабочей программы, позволяют строить процесс обучения на основе данного подхода. В результате компетенции, сформированные в школе при изучении физики, могут впоследствии использоваться учащимися в любых жизненных ситуациях.

Форма организации образовательного процесса: классно-урочная система.

Технологии, используемые в обучении: развивающего обучения, обучения в сотрудничестве, проблемного обучения, развития исследовательских навыков, информационно-коммуникационные, здоровьесбережения и т. д.

Основными формами и видами контроля знаний, умений и навыков являются: текущий контроль в форме устного фронтального опроса, контрольных работ, физических диктантов, тестов, проверочных работ, лабораторных работ.

2.Общая характеристика учебного предмета

Физика, как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики — системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания химии, биологии, физической географии и астрономии.

В системе естественно-научного образования физика как учебный предмет

занимает важное место в формировании научного мировоззрения и ознакомления обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека, в формировании собственной позиции по отношению к физической информации, полученной из разных источников.

Изучение физики на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников. Содержание базового курса позволяет использовать знания о физических объектах и процессах для обеспечения безопасности при обращении с приборами и техническими устройствами; для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; для принятия решений в повседневной жизни.

3. Цели.

Изучение физики в средней школе на базовом уровне направлено на достижение следующих целей:

- формирование у обучающихся умения видеть и понимать ценность образования, значимость физического знания для каждого человека; умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- формирование у обучающихся целостного представления о мире и роли физики в создании современной естественно-научной картины мира; умения объяснять объекты и процессы окружающей действительности природной, социальной, культурной, технической среды, используя для этого физические знания;
- приобретение обучающимися опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности, навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, эффективного и безопасного использования различных технических устройств;
- овладение системой научных знаний о физических свойствах окружающего мира, об основных физических законах и о способах их использования в практической жизни.

Для достижения поставленных целей учащимся **необходимо овладеть** методом научного познания и методами исследования явлений природы, знаниями о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления. У учащихся необходимо сформировать умения наблюдать физические явления и проводить экспериментальные исследования с использованием измерительных приборов.

В процессе изучения физики должны быть сформированы такие общенаучные понятия, как природное явление, эмпирически установленный факт, гипотеза, теоретический вывод, результат экспериментальной проверки, а также понимание ценности науки для удовлетворения потребностей человека.

4. Описание места учебного предмета в базисном учебном плане

В соответствии с базисным учебным планом курсу физики средней (полной) школы предшествует курс физики основной школы (7—9 классы), включающий элементарные сведения о физических величинах и явлениях.

На этапе средней (полной) школы возможно изучение обучающимися физики на базовом уровне .

Данная рабочая программа по физике для базового уровня составлена из расчёта 70 ч за 1 год обучения

5. Описание ценностных ориентиров содержания учебного предмета

Деятельность образовательной организации общего образования при обучении физике в средней школе должна быть направлена на достижение обучающимися следующих **личностных результатов**:

- умение управлять своей познавательной деятельностью; готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать со взрослым, сверстниками, детьми младшего возраста в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и оте-

чественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;

- чувство гордости за российскую физическую науку, гуманизм;
- положительное отношение к труду, целеустремлённость;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения выпускниками средней школы программы по физике являются:

1) освоение регулятивных универсальных учебных действий:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
 - определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, чтоцель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;

осознавать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей;

2) освоение познавательных универсальных учебных действий:

критически оценивать и интерпретировать информацию с разных позиций; распознавать и фиксировать противоречия в информационных источниках; использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий; осуществлять развёрнутый информационный поиск и ставить на его основе

новые (учебные и познавательные) задачи;

искать и находить обобщённые способы решения задач; приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого человека;

анализировать и преобразовывать проблемно-противоречивые ситуации;

выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;

- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться);

3) освоение коммуникативных универсальных учебных действий:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за её пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развёрнуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над **об**щим продуктом/решением;

представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;

— подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;

воспринимать критические замечания как ресурс собственного развития;

- точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результатами освоения программы на базовом уровне являются:

— сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания, о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;

владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;

- сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; владение умениями обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;

- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования; владение умениями описывать и объяснять самостоятельно проведённые эксперименты, анализировать результаты полученной из экспериментов информации, определять достоверность полученного результата;
 - умение решать простые физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду, осознание возможных причин техногенных и экологических катастроф;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

6. Основные виды учебной деятельности обучающихся

- а) Урок изучения нового материала. Сюда входят вводная и вступительная части, наблюдения и сбор материалов как методические варианты уроков:
- *Виды:* урок-лекция, урок беседа, урок с использованием учебного видеофильма, урок теоретических или практических самостоятельных работ (исследовательского типа), урок смешанный (сочетание различных видов урока на одном уроке).
- б) Уроки совершенствования знаний, умений и навыков. Сюда входят уроки формирования умений и навыков, целевого применения усвоенного и др.:
- *Виды:* урок самостоятельных работ, урок-лабораторная работа, урок практических работ, урокэкскурсия, семинар.
- в) Урок обобщения и систематизации. Сюда входят основные виды всех пяти типов уроков:
- урок-семинар, урок-конференция, интегрированный урок, творческое занятие, урок-диспут, урок-деловая/ролевая игра.
- г) Уроки контроля, учета и оценки знаний, умений и навыков:
- Виды: устная форма проверки (фронтальный, индивидуальный и групповой опрос), письменная проверка, зачет, зачетные практические и лабораторные работы, контрольная (самостоятельная) работа, смешанный урок (сочетание трех первых видов), урок-соревнование.
- д) Комбинированные уроки: на них решаются несколько дидактических задач.

7. Содержание учебного курса (с указанием часов)

Научный метод познания природы (1ч)

Физика - фундаментальная наука о природе. Научный метод познания. Методы научного исследования физических явлений. Эксперимент и теория в процессе познания природы. Погрешности измерения физических величин. Научные гипотезы. Модели физических явлений. Физические законы и теории. Границы применимости физических законов. Физическая картина мира. Открытия в физике — основа прогресса в технике и технологии производства.

Механика (26 ч)

Системы отсчета. Скалярные и векторные физические величины. Механическое движение и его виды. Относительность механического движения. Мгновенная скорость. Ускорение. Равноускоренное движение. Движение по окружности с постоянной по модулю скоростью. Принцип относительности Галилея. Масса и сила. Законы динамики. Способы измерения сил. Инерциальные системы отсчета. Закон всемирного тяготения. Закон сохранения импульса. Кинетическая энергия и работа. Потенциальная энергия тела в гравитационном поле. Потенциальная энергия упруго деформированного тела. Закон сохранения механической энергии.

Демонстрации

Зависимость траектории от выбора системы отсчета. Падение тел в воздухе и в вакууме. Явление инерции. Измерение сил. Сложение сил. Зависимость силы упругости от деформации. Реактивное движение. Переход потенциальной энергии в кинетическую и обратно.

Фронтальные лабораторные работы

- 1. Изучение движения тела по окружности.
- 2. Изучение закона сохранения механической энергии.

Молекулярная физика. Термодинамика (17 ч)

Молекулярно-кинетическая теория строения вещества и ее экспериментальные основания. Абсолютная температура. Уравнение состояния идеального газа. Связь средней кинетической энергии теплового движения молекул с абсолютной температурой. Строение жидкостей и твердых тел. Кристаллические и аморфные тела. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый и второй законы термодинамики. Принципы действия тепловых машин. КПД теплового двигателя. Проблемы теплоэнергетики и охрана окружающей среды.

Демонстрации

Механическая модель броуновского движения.

Изменение давления газа с изменением температуры при постоянном объеме. Изменение объема газа с изменением температуры при постоянном давлении. Изменение объема газа с изменением давления

при постоянной температуре. Устройство гигрометра и психрометра. Кристаллические и аморфные тела. Модели тепловых двигателей.

Фронтальная лабораторная работа

з. Опытная проверка закона Гей-Люссака.

Электродинамика (23 ч)

Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Разность потенциалов. Электроемкость. Конденсатор. Последовательное и параллельное соединение проводников. Работа и мощность тока. Источники постоянного тока. Электродвижущая сила. Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Полупроводники. Плазма.

Демонстрации

Электризация тел. Электрометр. Взаимодействие зарядов. Энергия заряженного конденсатора. Электроизмерительные приборы.

Фронтальные лабораторные работы

- 4. Изучение последовательного и параллельного соединения проводников.
- 5. Измерение ЭДС и внутреннего сопротивления источника тока.

8. Ресурсная база

Технические средства обучения

- 1. Компьютер.
- 2. Мультимедийный проектор.

Интернет-ресурсы:

1. РЭШ https://resh.edu.ru/ - все уроки, презентации, тренировочные задания

- 2. Библиотека предмет «Физика». Режим доступа: http://www.proshkolu.ru
- 3. Видеоопыты на уроках. Режим доступа: http://fizika-class.narod.ru
- 4. Единая коллекция цифровых образовательных ресурсов. Режим доступа: http://school-collection.edu.ru
- 5. Интересные материалы к урокам физики по темам; тесты по темам; наглядные пособия к урокам. Режим доступа: http://class-fizika.narod.ru
- 6. Цифровые образовательные ресурсы. Режим доступа: http://www.openclass.ru
- 7. Электронные учебники по физике. Режим доступа: http://www.fizika.ru

9. Список литературы

Используемый учебно-методический комплекс

- 1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика. 10 класс. Учебник для общеобразовательных организаций. М: Просвещение, 2020.
- 2. Физика. Рабочие программы. Предметная линия учебников серии «Классический курс». 10-11 классы: учеб. пособие для общеобразоват. организаций: базовый и углубл. уровни / А.В.Шаталина. 2-е изд. М.: Просвещение, 2020. 91 с.

Литература:

- 1. Волков В.А. Универсальные поурочные разработки по физике: 10 класс. М.: ВАКО, 2020. 400 с. (В помощь школьному учителю).
- 2. Сауров Ю.А. Физика. Поурочные разработки. 10 класс: пособие для учителей общеобразовательных учреждений / М.: Просвещение. 2020.
- 3. ФИЗИКА 10. Электронное приложение к учебнику Г.Я.Мякишева, Б.Б.Буховцева, Н.Н.Сотского. ЗАО «Образование Медиа» ОАО «Издательство «Просвещение», 2020. **DVD.**
- 4. Повторение и контроль знаний по физике на уроках и внеклассных мероприятиях, 10-11 классы: диктанты, тесты, кроссворды, внеклассные мероприятия. Н.А. Янушевская. Москва: Издательство Глобус; Волгоград: Панорама, 2020. 240 с. (Качество обучения).
- 5. Контрольно-измерительные материалы. Физика: 10 класс / Сост. Н.И.Зорин. - М.: ВАКО, 2020.
- 6. Петрушенко Н.И. Сборник диктантов по физике: VI-X кл. Минск.: «Народная асвета», 1982. 64 с.
- 7. Кабардин О.Ф., Орлов В.А. Физика. Тесты. 10-11 классы: Учебнометодическое пособие. М.: Дрофа, 2020.